Record CO2 emissions
Geology and GeographyGlobal emissions of carbon dioxide have never been as high as they are today. In 2010, it even rose more sharply than ever before. This has now been announced by the US Department of Energy. The figures exceed even the worst fears.
For years, experts have been warning about the speed of global warming. Apparently without success: for the proportion of the climate-damaging gas carbon dioxide in the air is rising rapidly. Especially in the industrialised countries, it is constantly pouring out of chimneys and exhaust pipes. The new figures are alarming: in 2010, the world emitted a total of over 33,500 million tonnes of carbon dioxide. That is 1,900 million tonnes more than in the previous year, an increase of six percent!
According to the US study, China and India are primarily responsible for the horror increase. Both countries are growing economically. They get their energy mainly from coal-fired power plants – and thus produce a lot of CO2. Overall, China is the record holder for greenhouse gas emissions, followed by the USA, Russia and India.
Policies on global climate protection have failed completely so far. China and the USA refuse to curb their CO2 emissions. Russia, Canada and Japan also refuse to comply with directives when the main polluters balk at meeting international limits. Bad for the climate, as the new study clearly confirms on the basis of the figures.
Contents:
The Keeling Curve
The world’s first CO2 measuring station was opened far away from car exhausts and factories: In 1958, the US climatologist David Keeling began to regularly measure the carbon dioxide content of the air on the volcano Mauna Loa on the island of Hawaii. This location was chosen quite deliberately. Because neither chimneys nor forests influenced the result, an average value of the trace gas in the air could be measured here. A second station in Antarctica also fulfilled these conditions. After two years, Keeling presented his results to the world: The level of carbon dioxide in the air was rising! In the following years, Keeling continued to fight for regular CO2 measurements of the atmosphere. With success: the result is the so-called Keeling curve, a collection of data that records the carbon dioxide content of the air to this day and documents the significant increase in CO2.
What pollutes the air?
A thick haze hangs thickly over the ground. Such a grey veil of mist can often be seen, especially in large cities and conurbations. Here, the air quality suffers because there are lots of dust particles floating around. Because they are too small to see with the naked eye, these suspended particles are also called fine dust. In addition to fine dust, toxic gases such as carbon monoxide or sulphur dioxide are suspended in the lower atmosphere and pollute the air.
A large part of these exhaust gases is produced by burning petroleum, coal and other substances. Cars, power plants, waste incineration and residential heating systems blow a lot of dirt into the air. In addition, there is dust kicked up – from roads, but also from factory farming, for example. The “exhaust fumes” of farm animals also contribute to the fact that the air is getting worse and worse. But it is not always humans who pollute the air: Volcanic eruptions can also contribute to higher particulate matter levels in the atmosphere.
The more pollutants there are in the air, the worse it is for our health: the respiratory tract can become ill, and the circulatory system and brain are damaged. Not only humans and animals suffer from the polluted air, plants are also damaged: If too much carbon dioxide and sulphur oxide are suspended in the air, acid (carbonic and sulphuric acid) forms in combination with water. What results is so-called “acid rain”, which causes the soil to become acidic. Plants growing in such soil become dry and die. This is called “forest dieback”. This can also happen far away from where the exhaust fumes enter the air, because the wind carries the acid rain clouds away for hundreds of kilometres.
Air pollution is particularly bad in cities with millions of inhabitants in India, Pakistan and Iran, or as in Mexico City. In Germany, there are regulations on how much air pollution is allowed. But even here, the values are not always adhered to and car traffic continues to increase.
In order to keep pollutants in the air low, it is therefore particularly important that enough forests and parks clean the air. Trees, like all green plants, absorb carbon dioxide from the air and produce oxygen, which is essential for life. “Green lungs” in big cities, i.e. green spaces and forests close to the city, are therefore particularly important for our health. And if you get on your bike more often instead of driving, you also help to keep the air clean.
The greenhouse effect
In a greenhouse, vegetables or flowers can thrive even when it is cold outside. This is because greenhouses are made of glass. The glass – or even a transparent film – allows the short-wave rays of the sun to reach the inside unhindered: The air warms up. For the long-wave heat radiation, on the other hand, the glass is impermeable, so the heat can no longer escape. That’s why it’s cosily warm in a greenhouse.
Something similar is happening on a large scale on Earth. The greenhouse gases carbon dioxide (CO2) and water vapour are naturally present in the atmosphere. Water vapour enters the air through evaporation, carbon dioxide through us breathing out. Volcanic eruptions also contribute to the natural carbon dioxide content of the air. Both gases have the same effect as the glass of a greenhouse: they allow the short-wave rays of the sun to reach the earth. At the same time, like an invisible barrier, they obstruct the long-wave heat radiation on its way back into space. The heat accumulates and the atmosphere heats up.
Without this natural greenhouse effect, hardly any life would be possible on Earth, because it would be far too cold for most living things. Instead of the current average temperature of plus 15 degrees, there would be an icy minus 18 degrees Celsius. The earth’s surface would be frozen!
The problem starts when we further increase the amount of greenhouse gases in the atmosphere. This happens primarily through the burning of oil, natural gas and coal. Heating our homes, driving cars, burning rubbish: Carbon dioxide is emitted during all these processes. This CO2 has the largest share in the man-made greenhouse effect. But the cultivation of rice or cattle farming also intensify the effect: large amounts of methane (CH4) – also a greenhouse gas – are produced in the stomachs of ruminants and in the flooded soils of rice fields. In addition, nitrous oxide, ozone and fluorocarbon are also greenhouse gases. Because all these gases slow down the heat radiation of the earth, the temperatures on our globe continue to rise.
The consequences of climate change
Climate change is already particularly visible in the polar regions. Just a few decades ago, the Arctic Ocean was largely covered by ice. But due to rising temperatures, this ice cover is melting: in the last 30 years, its area has almost halved. At the same time, the ice cover is becoming thinner and thinner. Climate researchers have calculated that the ice could melt completely in the next 20 years. Sea levels would rise by several metres as a result. But not only the ice sheets at the poles are melting. The glaciers in the high mountains are also losing mass.
Because the sea level is rising due to the melting of the ice, ever larger coastal areas are being flooded. Low-lying island states, such as the Maldives in the Indian Ocean or Tuvalu in the Pacific, are therefore increasingly threatened by storm surges. And not only the sea level, but also the water temperature is rising with climate change. As a result, more water evaporates and more water vapour is stored in the air. This increases the greenhouse effect, which heats up the atmosphere even more. In addition, this increases the risk of storms such as heavy rain and hurricanes.
All these consequences of climate change can already be observed now. Climate researchers are trying to calculate how it will continue with the help of computer models. But the future is difficult to predict because so many influences determine our climate. For example, the melting of glaciers dilutes the salty sea water with fresh water. The salinity of the sea, however, drives ocean currents. So what could happen if the lower salinity causes the warm Gulf Stream to break off? Would it then first become colder instead of warmer in Europe? What would happen if the permafrost thaws in the far north? Will tonnes of the greenhouse gas methane then escape from the ground? And will this accelerate climate change?
So far, no one can answer that exactly. But with all the unanswered questions, one thing seems certain: If we do not drastically reduce our carbon dioxide emissions, temperatures on this globe will continue to rise.
Recent
- Exploring the Geological Features of Caves: A Comprehensive Guide
- What Factors Contribute to Stronger Winds?
- The Scarcity of Minerals: Unraveling the Mysteries of the Earth’s Crust
- How Faster-Moving Hurricanes May Intensify More Rapidly
- Adiabatic lapse rate
- Exploring the Feasibility of Controlled Fractional Crystallization on the Lunar Surface
- Examining the Feasibility of a Water-Covered Terrestrial Surface
- The Greenhouse Effect: How Rising Atmospheric CO2 Drives Global Warming
- What is an aurora called when viewed from space?
- Measuring the Greenhouse Effect: A Systematic Approach to Quantifying Back Radiation from Atmospheric Carbon Dioxide
- Asymmetric Solar Activity Patterns Across Hemispheres
- Unraveling the Distinction: GFS Analysis vs. GFS Forecast Data
- The Role of Longwave Radiation in Ocean Warming under Climate Change
- Esker vs. Kame vs. Drumlin – what’s the difference?